Chemical Analysis

Lesson Objectives

You will be able to

- describe the importance of chemical analysis in different scientific fields,
- ▶ identify the scientific fields where chemical analysis is important and explain how it is used,
- explain qualitative and quantitative analyses and the differences between them,
- describe the different tests used in qualitative and quantitative analyses,
- suggest the type of chemical analysis (or even the specific type of test) for a given experiment or scenario.

Importance of Chemical Analysis in Different Fields

Doctors, pharmacists, and chemists analyze what compounds are present in a medicine and in what amounts or concentrations.

Medical health professionals also analyze the composition of blood and bodily fluids to diagnose different illnesses.

Doctors can, for example, analyze the content of lipids in blood samples to determine if a patient will develop a cardiovascular disease and to determine if the patient needs to take any medication.

Farmers and soil scientists analyze the properties of farmable soil to understand a particular soil's elemental composition and acidity or basicity so that they can choose the best fertilizers for their fields.

Food chemists and nutritionists analyze the composition of foods to determine what nutrients they contain and in what proportions.

Importance of Chemical Analysis in Different Fields (Continued)

Environmental chemists study environmental materials such as soils, gases, and bodies of water to determine if pollutants are present and in what proportions.

For example, they analyze toxic substances like carbon monoxide and sulfur dioxide gases and heavy metals such as arsenic and mercury, and they even analyze pesticide and herbicide contamination of foodstuffs.

Mechanical engineers and metallurgists investigate the metals and chemical compounds that are present in ores and in machinery components. This helps them to improve the strength of machines and improve metal extraction processes.

Example 1: Identifying Which Scientific Field Analyzes Levels of Glucose in the Human Body

Chemical analysis can be used to determine the amount of glucose present in a person. In which scientific field is this analysis important?

- A. Environmental
- B. Agricultural
- C. Industrial
- D. Food chemistry
- E. Medical

Answer

Glucose levels in a person's body, for example, blood glucose levels, are important in maintaining optimal health. Analysis of the amount of glucose present in blood is important in the medical field. The correct answer is E: medical.

Definition: Analyte

The analyte is the substance in the sample that is being investigated.

A Chemical Sample

A chemical sample is a small and easy-to-handle quantity of a bulk material.

Samples are always made to be reasonable mimics of the bulk materials they represent.

The sample and bulk material should have the same, or essentially the same, physical and chemical properties.

Definition: Sample

A sample is a limited quantity of a material that is intended to be similar to and represent that material.

Qualitative and Quantitative Analysis

Chemical samples can be analyzed with qualitative or quantitative analysis techniques.

Qualitative chemical analysis techniques are used to determine the identity of a substance or substances in a chemical sample.

Definition: Qualitative Chemical Analysis

Qualitative analysis methods are used to identify substances in chemical samples.

A sample is defined as being pure if it contains a single chemical substance.

A sample is defined as being a mixture if it contains more than one chemical substance.

Most solid materials, liquids, and gases can be classed as mixtures because they are made up of at least two different chemical substances.

The components can be elements, such as nitrogen, or compounds, such as water and carbon dioxide.

Many real-life mixtures (like soil, air, or blood) are complex mixtures that contain lots of different component elements and molecules as shown in the following table.

Real-Life Mixtures

Sample	Components		
Table salt	Na ⁺ ions and Cl ⁻ ions		
Polluted air	N ₂ , O ₂ , H ₂ O, and CO ₂ ; small amounts of Ar, NO, and NO _x gases; CO; and so on		
Blood	Red blood cells, H ₂ O, white blood cells, platelets, cell components, hormones, Na ⁺ , Cl ⁻ , Mg ²⁺ , Ca ²⁺ , and various other ions, sugar (C ₆ H ₁₂ O ₆), CO ₂ , urea, cholesterol, and many other substances		
Oranges	Citric acid, H ₂ O, sugars (sucrose, fructose, and glucose), vitamins E, D, K, and C, and many other compounds, such as limonene, octanal, ethyl butanoate, decanal, hexanal, (S)-linalool, hydrocarbons, alcohols, aldehydes, and esters		

Identification of Pure Samples

Physical constants such as the melting point, boiling point, solubility, and molar mass can be used to determine if a known substance is pure or contaminated with impurities.

For example, consider the following:

- Chemists could use the known boiling point of water molecules to determine if a sample of water is contaminated with impurities.
 - ▶ Pure water boils at a temperature of 100°C if the pressure is exactly equal to one atmosphere (atm).
 - Contaminated samples of water boil at a slightly higher temperature, because they contain chemical impurities.
 - Samples of water can be boiled to determine if they are pure or if they contain chemical impurities.
- Chemists can also use the known molar mass values of organic compounds to determine the composition of a plant extract.
 - Molar mass information from mass spectrometers can be compared with reference data to determine the content of a plant extract.

Identification of Pure Samples (Continued)

- Silver nitrate can be used to test for the presence of most halide salts because silver ions form a colored precipitate when they react with chloride, bromide, or iodide ions.
- ▶ The following equation explains the reaction that occurs between chloride ions and silver nitrate:

Cl ⁻ (<i>aq</i>)	+ AgNO ₃ (aq) \longrightarrow	$\operatorname{AgCl}(s)$	$+ NO_3(aq)$
Halide ion	Silver nitrate	White precipitate	Nitrate ion

Reactions between Silver Nitrate and Halide Ions

The following table and figure explain the reactions between silver nitrate and fluoride, chloride, bromide, and iodide ions.

		Cl ⁻	Br ⁻	I_
Ion Present	Observation			
F ⁻	No precipitate			
Cl ⁻	White precipitate			
Br¯	White-yellow precipitate			
I ⁻	Yellow precipitate	White Precipitate	White-Yellow Precipitate	Yellow Precipitate
		AgCl(s)	AgBr(s)	AgI(s)

Identification of Starch in Food Products

Yellow-brown droplets of iodine solution can be added to food samples to determine if they contain any starch molecules.

The iodine droplets leave blue-black blemishes on food products if they contain starch.

The image shows how iodine droplets can be used to test for the presence of starch molecules in a sample of a food product.

Confirmatory Tests

Single tests can be inconclusive, and we usually need to perform at least two different chemical tests to determine the identity or quantity of a substance in a sample.

For example, consider the following:

- Lithium, calcium, and strontium metals all yield red flames in flame tests.
- The flame test has to be combined with another form of chemical analysis to confirm that a substance contains lithium and not calcium or strontium metals.

Example 2: Identifying the Statement That Does Not Describe Qualitative Analysis

Which of the following is **not** an example of qualitative chemical analysis?

- A. Identifying the functional group in a molecule
- B. Identifying the cationic groups in a compound
- C. Identifying the anionic groups in a compound
- D. Determining the concentration of a compound in a solution
- E. Determining the elemental composition of a molecule

Answer

Qualitative analysis is the identification of the constituent substance or substances (elements, ions, compounds, or the functional groups in a compound) in a sample.

According to this definition, we can rule out options A, B, C, and E, which all refer to identifying parts of a compound.

Example 2 (Continued)

Answer D is not an example of qualitative chemical analysis but rather quantitative chemical analysis, since concentration can be quantified.

We can use these statements to determine that option D is the correct answer to this question.

Definition: Quantitative Analysis

Quantitative analysis techniques are used to determine the abundances of elements and compounds in chemical samples.

Units Used in Quantitative Analysis

The opposite figure shows some units that are used to describe the abundance of elements and molecules in chemical samples.

The figure shows that abundances can be expressed as mass and concentration values or mole and percentage composition numbers.

The analytical balance or scale is used by almost all analytical chemists to determine the masses of different chemical substances.

Most analytical balances are incredibly precise machines, and they usually show mass values to the nearest 0.1, 0.01, or even 0.001 milligrams (mg).

Quantitative analysis techniques can help chemists to determine the amount of a substance in a chemical sample.

It also can help to determine how much desirable chemical product will be produced during a chemical reaction.

Methods of Quantitative Analysis

The following table summarizes some of the most important tests for analyzing chemical samples.

Name of Test	How It Works	Purpose	Example of
			Its Use
Volumetric	By measuring	To determine	To identify the
analysis	its volume or by	the unknown	concentration of
	measuring the	concentration of	contaminants in
	volume of a	a known	acid rain or
	second	reactant	wastewater
	substance that		
	reacts with it		
Gravimetric	To quantify an	To quantify the	To determine
analysis	analyte based	amount of an	the content of a
	on its mass	analyte in a	cation in a
		chemical	sulfate salt
		substance	

Methods of Quantitative Analysis (Continued)

Name of Test	How It Works	Purpose	Example of
			Its Use
Combustion	An unknown	To determine	To determine
analysis	pure compound	the empirical	the quantity of
	is reacted with	formula and	nitrogen in
	oxygen, and the	abundance of a	animal feed
	combustion	pure organic	
	products are	compound	
	measured		
Flame test	A Bunsen	To determine	To test whether
	burner flame	the identity of a	sodium is
	changes color in	metal element	present in a soil
	the presence of		sample
	certain ions		

Methods of Quantitative Analysis (Continued)

Name of	How It Works	Purpose	Example of
Test			Its Use
Gas test	Various chemical tests	To confirm the	To determine if
	can be performed to	presence or absence of	a sample
	determine the identity	gaseous chemical	contains carbon
	of an unknown gas	elements and	dioxide gas by
		compounds	bubbling it
			through
			limewater
Precipitation	Two soluble salts are	To identify the presence	To identify the
reactions	reacted in a solution,	of a compound, or part	presence of a
	and an insoluble	of a compound, based	halide in a salt
	product forms	on its ability to form a	
		conspicuous insoluble	
		product	

Chemists repeatedly measure the same chemical quantity to determine a more accurate average value.

Comparisons can also be made with reference data to ensure that a chemical quantity was measured accurately.

Example 3: Determining If Chemical Tests Are Quantitative or Qualitative Tests

A chemist finds an unlabeled salt solution and attempts to determine its composition and properties.

- 1. The chemist adds a few drops of $AgNO_3$ to a sample of the salt solution to see if a precipitate forms, indicating the presence of a halide group. Is this a qualitative or a quantitative test?
 - A. Qualitative
 - B. Quantitative
- 2. The chemist finds that a precipitate is formed upon the addition of $AgNO_3$. They filter, dry, and weigh the precipitate and use it to determine the mass of the salt in the solution. Is this a qualitative or a quantitative test?
 - A. Quantitative
 - B. Qualitative

Example 3 (Continued)

Answer

Part 1

 $AgNO_3$ can be added to a sample to confirm the presence or absence of a halide ion. No measurement is being made, and no quantity is being defined.

The correct answer is a qualitative test, which is option A.

Part 2

This is a quantitative test because a measurement is being made. We can use this statement to determine that option A is the correct answer to this question.

Example 4: Understanding the Difference between Qualitative and Quantitative Analysis

Chemical analysis can be split into two types: qualitative and quantitative. Which statement best describes the difference between them?

- A. Qualitative analysis aims to identify the composition of a substance, whereas quantitative analysis aims to determine the mass, percentage composition, or concentration of a substance.
- B. Qualitative analysis can be used to identify the cation in a compound, whereas quantitative analysis can be used to identify the anion in a compound.
- C. Qualitative analysis is used when the sample is a solid, whereas quantitative analysis is used when the sample is an aqueous solution.
- D. Qualitative analysis aims to identify the chemical properties of a substance, whereas quantitative analysis aims to identify the physical properties.
- E. Qualitative analysis aims to determine the mass, percentage composition, or concentration of a substance, whereas quantitative analysis aims to identify the composition of a substance.

Example 4 (Continued)

Answer

Qualitative analysis is the identification of the constituent substance or substances (elements, ions, compounds, or the functional groups in an organic compound) in a sample, while quantitative analysis is the determination of the amount or quantity of each constituent present in a sample.

Statement A, "qualitative analysis aims to identify the composition of a substance, whereas quantitative analysis aims to determine the mass, percentage composition, or concentration of a substance," is correct.

Key Points

- ► The analyte is the substance in the sample that is being investigated.
- A sample is a small and easy-to-handle quantity of a bulk material. Samples have the same physical and chemical properties as the source material.
- Pure samples have a set of unique chemical and physical properties that distinguishes them from other substances.
- Chemical analysis is carried out in many fields including the medical field, agriculture, the food industry, environmental studies, and engineering.
- Qualitative analysis methods are used to confirm the presence or absence of a substance in a chemical sample.
- Quantitative analysis techniques are used to determine the abundance of elements and compounds in chemical samples.